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We study the model of a d-wave superconductor interacting with finite concentration of the Anderson
impurities at zero temperature. The interaction between impurity and conduction electrons is taken into account
within the large-N approximation. We discuss the obtained phase diagram and its dependence on the main energy
scales.

PACS numbers: 74.81.–g, 74.25.Dw

1. Introduction

Magnetic and nonmagnetic impurities in correlated
electron systems are an important probe of the properties
of the host material. There is large and growing body of
research on impurities in high-temperature superconduc-
tors [1, 2]. The refinement of experimental techniques
probing local properties stimulated the theoretical work
on defects in those systems. The investigation of the ef-
fects of Zn, Ni and other dopants in YBa2Cu3O7 (YBCO)
and Bi2Sr2CaCu2O8+x (BSCCO) answered some impor-
tant questions and raised new ones.

Measurements on some compounds show that the su-
perconducting order parameter is not uniform over the
entire sample [3–7]. Scanning tunneling spectroscopy
measurement showed that modulation of the structure
of BSCCO is correlated locally with the magnitude of
the energy gap [8]. The spatial variation of ∆0(r) may
result e.g. from the structural supermodulation affecting
the strength of local pairing interaction [9].

The intrinsic spatial variation of the superconducting
gap raises the possibility of observing impurity states on
both sides of the impurity quantum phase transition in
the same sample. Theoretical work on magnetic impu-
rities in systems with reduced density of states near the
Fermi surface [10–17] showed that the resonant impurity
states may be viewed as a sensitive probe of the supercon-
ducting state. If the coupling to the magnetic impurity
is small compared to the energy scale associated with
the gap, the impurity is decoupled from conduction elec-
trons. This impurity quantum phase transition occurs at
finite coupling, provided the particle–hole symmetry is
broken, and may be studied by scanning tunneling mi-
croscopy (STM) techniques. The low-energy behavior of
the model depends on the exponent r in the conduction
electron density of states, N(ε) ∼ |ε|r, where the Fermi
level is fixed at ε = 0.

2. The model

The interaction of impurities with the conduction elec-
tron band may be studied in the Anderson model with a
BCS-type pairing interaction

H =
∑

k,m

εkc†kmckm + E0

∑
m

f†mfm

+V
∑

k,m

(
c†k,mfmb + h.c.

)

+
∑

k,m

[∆(k)c†kmc†−k−m + h.c.]. (1)

This model allows studying also the mixed valence
regime where the impurity occupation number is smaller
than 1 and charge fluctuations are dominant. We assume
a two-dimensional d-wave order parameter of the form
∆(k) = ∆0 cos(2φ), where φ is the angle in the kx−ky

plane. The constraint term λ(nf +b†b−1) is added to the
Hamiltonian to prevent doubly-occupied states, where λ
is the Lagrange multiplier and the limit λ →∞ is taken.
Minimizing the free energy with respect to the resonant
level energy εf and z = 〈b†〉 = 〈b〉 and taking the mean
field approximation we obtain

1
N

= −Im
∫ ∞

−∞
dωf(ω)Gf (ω + i0+), (2)

E0 − εf

V 2

= Im
∫ ∞

−∞
dωf(ω)G0(ω + i0+)Gf (ω + i0+)]. (3)

Equations (2) and (3) are solved self-consistently with
the gap equation

∆(k) =
∫ ∞

−∞
dωf(ω)

∑

k′
Vkk′G(k′, ω). (4)

The self-energy in the full conduction electron Green
function G is averaged over impurity positions. We solve
these equations self-consistently and obtain the phase di-
agram as a function of the parameters of the model.

(120)
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3. Results and discussion

The obtained phase diagram is shown in Fig. 1. The
approximate slope of the impurity quantum phase tran-
sition line, −0.26, agrees with results of the numerical
renormalization group (NRG) method [14] and large-N
one-impurity calculation [17].

Fig. 1. The phase diagram of the d-wave superconduc-
tor with nondegerate Anderson impurities for several
impurity concentrations. The lines are guide to the eye.
The order parameter amplitude is ∆0 = 0.01D, where
D is half of the conduction electron band width. All en-
ergies are scaled in units of D. The dotted line indicates
the impurity quantum phase transition.

Fig. 2. The impurity occupation number as a function
of the ratio E0/Γ0 for several values of Γ0. At the im-
purity transition nf → 1.

When the bare impurity level E0 lies closer to the
Fermi energy, the self-consistent treatment of finite con-
centration of impurities leads to reentrant behavior [18].
In that part of the phase diagram the pair-breaking is
weaker and is spread over wide energy range.

Figure 2 shows the impurity occupation number nf

near the impurity transition. It reaches 1 at the tran-
sition. For Γ0 À ∆0, nf (E0) slowly approaches 1,
|dnf/dE0|Γ0=const ¿ 1, as E0/Γ0 → (E0/Γ0)critical.
However, for small Γ0 the dependence of nf on E0/Γ0

becomes singular and the slope |dnf/dE0|Γ0=const À 1.

Fig. 3. The location of the cusp (dotted line) and the
impurity transition from the local moment phase to the
screened phase (broken line).

In the limit of vanishing interaction Γ0 → 0,
E0 = 0 is the singular point of the model. For E0 > 0
the superconducting state survives even for large impu-
rity concentration.

For any finite n there is a cusp on the phase diagram at
some (Γ0c, E0c). For Γ0 slightly larger than Γ0c there is a
superconductor-normal state transition at E01 < E0c and
another normal-superconductor transition at E02, where
E01 < E02 < E0c. At fixed n, E02−E01 ' α(n)(Γ0−Γ0c),
where α(n) weakly depends on n. The location of the
cusp in the E0−Γ0 plane is shown in Fig. 3.

It would be interesting to test this theoretical picture
in experiment. Near the impurity quantum phase transi-
tion the impurity state is very sensitive to small changes
of hybridization Γ0 or impurity level energy E0. In com-
pounds with spatially varying energy gap this could lead
to impurities existing on the two sides of the transition
line in different parts of the sample.

The phase diagram calculated in this work might also
be relevant in some heavy-fermion compounds where sim-
ilar competition occurs between energy scales associated
with the Kondo screening and the superconducting cor-
relations. Studies of CeCu2(Si1−xGex)2 under varying
hydrostatic pressure reveal two superconducting domes
in the phase diagram [19, 20]. The existing interpreta-
tion of this dependence on pressure relies on additional
valence-fluctuation mediated pairing mechanism [21].

However, our work suggests that the second super-
conducting dome in the compound CeCu2(Si1−xGex)2
at high pressure may follow from competition between
pairing and the Kondo singlet formation. The change of
pressure shifts the chemical potential and brings the sys-
tem to the mixed-valence regime when the bare f -level
E0 of Ce ions approaches EF. The phase diagram in Fig.
1 shows that in this limit superconducting correlations
are less affected.

The large-N method used in the present calculation
gives qualitatively similar results for larger N . The reen-
trant behavior as a function of E0 for fixed Γ0 results from
the competition between the formation of the impurity
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resonance and superconducting correlations and depends
mainly on the ratio of the relevant energy scales. Re-
sults for an s-wave order parameter will be presented in
a separate publication.

Extension of the theory beyond the mean field should
not change the phase diagram qualitatively. A more de-
tailed description of physics in the vicinity of the im-
purity transition line requires careful treatment of low-
-energy scattering in specific superconducting com-
pounds.
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